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Editorial on the Research Topic

Single cell intelligence and tissue engineering

Single-cell sequencing has emerged as a powerful technology to dissect the

heterogeneity of complex biological tissues at genomic, epigenomic, and

transcriptomic levels, and has been extensively applied in various biological researches

particularly in disease mechanisms and developmental biology (Paik et al., 2020; Gohil

et al., 2021; Lei et al., 2021). Since the first single-cell RNA-sequencing (scRNA-seq)

publication in 2009 (Tang et al., 2009), single-cell-based technologies have generated

massive datasets, offering great opportunities to fully address biomedical problems as well

as posing a challenge to computational analysis. At the same time, machine learning

methods have been successfully used in processing many kinds of big data, including

scRNA-seq data analysis (Petegrosso et al., 2020; Flores et al., 2022).

Nevertheless, more in-depth studies by using elegant methods and strategies to

analyze the massive data obtained from the sequencing are still in need to improve our

understanding of complex disorders. To make the best use of the single-cell-based data,

researchers would first demand efficient and accurate computational pipelines to cluster,

annotate cell types, uncover the marker genes and perform functional analysis. Besides,

proper study design, including dataset selection and cross-validation, should be

conducted to ensure that the evidence is convincing. In this context, this research

topic included nine research articles focusing on methods development and clinical

application of single-cell technology, giving more examples of data analysis and

application in biomedical research.

One of the most common applications of single-cell approaches is to identify and

distinguish cell types, and more related computational methods are demanded. Li et al.

trained several classifiers and obtained optimal models from in vitro cultured human
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hepatocyte single-cell RNA data, and identified biomarkers for

distinct differentiated hepatic cell types. By uncovering

qualitative features for different stages of differentiation of

liver cells, this study aimed to provide potential targets for cell

transplantation to treat liver diseases. Similarly, Li et al. applied

several different machine learning methods to expression

profiling data of human pancreatic islet cells at single-cell

resolution from both type 2 diabetes (T2D) patients and non-

diabetic donors and discovered several T2D-associated genes.

These two studies showed the promising applications of machine

learning using single-cell expression profiling datasets to

understand complex diseases.

Clustering is a critical step in single-cell data analysis to

reveal heterogeneities and recognize cell types, requiring

efficient and accurate computational algorithms. Tian et al.

utilized an enhanced consensus-based clustering model and

developed a novel computation method scMelody to cluster

cells with single-cell DNA methylation data, such as scME-

seq, scBS-seq, scWGBS, scTrio-seq, scNOMe-seq and snmC-

seq. By using seven real single-cell methylation datasets and a

variety of simulated datasets with different initial settings,

scMelody showed better clustering performance and

scalability when compared to other existing methods. In

the two case studies, scMelody was able to uncover novel

cell clusters from human hematopoietic cells and mouse

neuron datasets.

Another two studies focused on developing prediction

models for diagnosis using machine learning methods.

Wang et al. explored mutation signatures with pan-cancer

whole exome sequencing data, and constructed a logistic

regression model to distinguish cancer types. The proposed

model was able to trace the tumor origin for metastatic

cancers, and predict cancer types using plasma ctDNA. Wu

et al. investigated the microbiota in lung tissue and

bronchoalveolar lavage fluid from lung ground-glass

opacity (GGO) patients, and constructed a model using

10 genera-based biomarkers to predict GGO.

In addition to the biomarker identification for disease

diagnosis, it has been widely recognized that the cellular

heterogeneity is prevalent in either tissue or cultured cancer

cells. Li et al. first identified a shared sub-cluster cancer stem

cells (CSC) using 4 scRNA-seq datasets from upper

gastrointestinal cancer (UGIC) patients including head and

neck squamous cell carcinoma (HNSCC), esophageal cancer

(EC), and gastric cancer (GC), and then compared the specific

cells to scRNA-seq datasets from other 6 cancers including

glioma, melanoma, osteosarcoma, breast cancer, ovarian cancer

and stellate cell cancer to validate the specificity. The UGIC-

specific CSC upregulated 33 genes while downregulated

141 genes compared to other tumors analyzed in this study,

involving in inflammatory and Wnt pathways. Smit et al.

applied FUNseq to spatially profile human breast epithelial

cell line MCF10A which is a widely used in vitro model for

breast cell transformation at single-cell resolution to decipher

intratumor heterogeneity. By comparing the gene expression

profiles and cell-cell communication among the cell

populations at outer, middle and inner regions in 2D

culture, the researchers found that cells at the outermost

edge are most invasive, with epithelial-to-mesenchymal

transition strongly activated.

While the advent of scRNA-seq technology has enabled

profiling gene expression for each cell, analyses of large

sample cohorts are still limited. The integration of existing

bulk transcriptomic datasets is one of the issues that deserve

attention and discussion in data mining. By taking advantage

of the power of single-cell approaches and the sample size of

bulk methods, two studies provided novel insights for

diseases. Shi et al. collected a series of single-cell

transcriptome datasets from non-failure hearts, dilated

cardiomyopathy and ischemic cardiomyopathy hearts,

followed by a comprehensive analysis to find out key genes

involved in heart failure. Furthermore, the researchers

obtained bulk gene expression datasets to validate the

findings from single-cell datasets. On the other hand, Yao

et al. developed a practical deconvolution pipeline by

constructing a signature gene matrix which was then used

to estimate cell proportion from bulk data with CIBERSORTx.

Using preeclampsia microarray data, the researchers found

that the proportion of trophoblast cells might contribute to

the pathogenesis of the disorder.

As discussed above, articles in this special issue covered the

fields of single-cell intelligence analysis methods development

and computational model construction, providing more

options for utilizing clinical datasets. By employing single-

cell transcriptome data from patients, the researchers

demonstrated the power of single-cell technology in

important cell type recognition and key gene identification,

broadening the clinical application of the technology. We

envision that the use of advanced computational analysis

approaches in single-cell datasets will reveal more useful and

accurate biomarkers, and greatly benefit the diagnosis and

treatments of complex diseases.
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